[資源][視頻]機器學習必修課:經典AI算法與程實戰 瞿煒,集齊人工智能十大經典算法、百張知識腦圖,帶你輕松上手實戰
當前位置:點晴教程→知識管理交流
→『 技術文檔交流 』
名稱:B站-機器學習必修課:經典AI算法與程實戰 瞿煒 描述:集齊人工智能十大經典算法、百張知識腦圖,帶你輕松上手實戰。 鏈接:https://www.alipan.com/s/QHkFSecEu13 目錄: 01-1課程內容和理念.mp4,2024/9/6 14:39,60.86 MB 01-2初識機器學習.mp4,2024/9/6 14:39,36.89 MB 01-3課程使用的技術棧.mp4,2024/9/6 14:40,37.01 MB 02-1本章總覽.mp4,2024/9/6 14:49,7.86 MB 02-2數據長什么樣:常見數據集、典型實例、如何使用.mp4,2024/9/6 14:51,35.28 MB 02-3研究哪些問題:分類、回歸等.mp4,2024/9/6 14:49,39.98 MB 02-4如何分門別類:監督、無監督、強化學習等.mp4,2024/9/6 14:49,29.27 MB 02-5機器學習的七大常見誤區和局限.mp4,2024/9/6 14:50,35.12 MB 03-10Numpy數組矩陣運算:一元運算、二元運算與矩陣運算.mp4,2024/9/6 14:50,32.97 MB 03-11Numpy數組統計運算:常用的都在這兒了.mp4,2024/9/6 14:50,16.03 MB 03-12Numpy數組arg運算和排序.mp4,2024/9/6 14:51,18.39 MB 03-13Numpy數組神奇索引和布爾索引.mp4,2024/9/6 14:52,23.67 MB 03-14Matplotlib數據可視化:基礎繪制與設置,mp4,2024/9/6 14:52,22.99 MMB 03-1本章總覽:相互關系與學習路線.mp4,2024/9/6 14:52,9.16 MB 03-2Anaconda圖形化操作.mp4,2024/9/6 14:52,15.87 MB 03-3Anaconda命令行操作.mp4,2024/9/6 14:53,18.94 MB 03-4JupyterNotebook基礎使用.mp4,2024/9/6 14:54,19.82 MB 03-5JupyterNotebook高級使用:常用魔法命令.mp4,2024/9/6 14:53,14.99 MB 03-6Numpy基礎:安裝與性能對比.mp4,2024/9/6 14:53,15.47 MB 03-7Numpy數組創建:特定數組、等差數組、隨機數組.mp4,2024/9/6 14:53,36.91 MB 03-8Numpy數組基礎索引:索引和切片.mp4,2024/9/6 14:54,16.82 MB 03-9Numpy非常重要的數組合并與拆分操作,mp4,2024/9/6 14:55,18.71 MB 04-1本章總覽.mp4,2024/9/6 14:54,12.11 MB 04-2KNN算法核心思想和原理.mp4,2024/9/6 14:54,39.42 MB 04-3KNN分類任務代碼實現.mp4,2024/9/6 14:55,32.76 MB 04-4數據集劃分:訓練集與預測集.mp4,2024/9/6 14:55,31.74 MB 04-5模型評價.mp4,2024/9/6 14:55,33.82 MB 04-6超參數.mp4,2024/9/6 14:55,30.33 MB 04-7特征歸一化.mp4,2024/9/6 14:55,27.78 MB 04-8KNN回歸任務代碼實現.mp4,2024/9/6 14:55,29.45 MB 04-9KNN優缺點和適用條件.mp4,2024/9/6 14:55,20.86 MB 05-10復雜邏輯回歸及代碼實現.mp4,2024/9/6 14:55,18.03 MB 05-11線性算法優缺點和適用條件,mp4,2024/9/6 14:56,21.56 MB 05-1本章總覽.mp4,2024/9/6 14:56,14.52 MB 05-2線性回歸核心思想和原理.mp4,2024/9/6 14:56,40.35 MB 05-3邏輯回歸核心思想和原理,mp4,2024/9/6 14:56,25.37 MB 05-4線性回歸代碼實現.mp4,2024/9/6 14:56,27.96 MB 05-5模型評價:MSE、RMSE、MAE和R方.mp4,2024/9/6 14:56,29.13 MB 05-6多項式回歸代碼實現.mp4,2024/9/6 14:56,19.65 MB 05-7邏輯回歸算法.mp4,2024/9/6 14:56,21.81 MB 05-8線性邏輯回歸代碼實現.mp4,2024/9/6 14:56,28.49 MB 05-9多分類策略.mp4,2024/9/6 14:56,8.68 MB 06-10LASSO和嶺回歸代碼實現.mp4,2024/9/6 14:56,23.94 MB 06-11模型泛化.mp4,2024/9/6 14:56,24.56 MB 06-12評價指標:混淆矩陣、精準率和召回率,mp4,2024/9/6 14:56,36.52 MB 06-13評價指標:ROC曲線.mp4,2024/9/6 14:57,33.8 MB 06-1本章總覽.mp4,2024/9/6 14:57,30.55 MB 06-2損失函數.mp4,2024/9/6 14:57,39.35 MB 06-3梯度下降,mp4,2024/9/6 14:57,35.66 MB 06-4決策邊界.mp4,2024/9/6 14:57,25.28 MB 06-5過擬合與欠擬合.mp4,2024/9/6 14:57,25.13 MB 06-6學習曲線.mp4,2024/9/6 14:57,26.73 MB 06-7交叉驗證.mp4,2024/9/6 14:57,23.9 MB 06-8模型誤差.mp4,2024/9/6 14:57,42.8 MB 06-9正則化.mp4,2024/9/6 14:57,45.01 MB 07-1本章總覽.mp4,2024/9/6 14:57,14.39 MB 07-2決策樹核心思想和原理.mp4,2024/9/6 14:57,22.73 MB 07-3信息熵.mp4,2024/9/6 14:57,39.7 MB 07-4決策樹分類任務代碼實現.mp4,2024/9/6 14:57,38.72 MB 07-5基尼系數.mp4,2024/9/6 14:58,19.63 MB 07-6決策樹剪枝.mp4,2024/9/6 14:58,25.97 MB 07-7決策樹回歸任務代碼實現.mp4,2024/9/6 14:57,12.6 MB 07-8決策樹優缺點和適用條件.mp4,2024/9/6 14:57,16.52 MB 08-1本章總覽.mp4,2024/9/6 14:58,26.78 MB 08-2神經網絡核心思想和原理.mp4,2024/9/6 14:58,56.43 MB 08-3激活函數.mp4,2024/9/6 14:58,36.11 MB 08-4正向傳播與反向傳播.mp4,2024/9/6 14:58,23.42 MB 08-5梯度下降優化算法.mp4,2024/9/6 14:58,36.83 MB 08-6神經網絡簡單代碼實現.mp4,2024/9/6 14:58,28.88 MB 08-7梯度消失和梯度爆炸.mp4,2024/9/6 14:58,28.5 MB 08-8模型選擇.mp4,2024/9/6 14:58,39.68 MMB 08-9神經網絡優缺點和適用條件.mp4,2024/9/6 14:58,20.2 MB 09-10SVM優缺點和適用條件.mp4,2024/9/6 14:59,11.32 MB 09-1本章總覽.mp4,2024/9/6 14:59,35.65 MB 09-2SVM核心思想和原理,mp4,2024/9/6 14:59,15.71 MB 09-3硬間隔SVM.mp4,2024/9/6 14:59,33.05 MB 09-4SVM軟間隔.mp4,2024/9/6 14:59,25.49 MB 09-5線性SVM分類任務代碼實現.mp4,2024/9/6 15:00,17.88 MB 09-6非線性SVM:核技巧.mp4,2024/9/6 15:00,35.3 MB 09-7SVM核函數.mp4,2024/9/6 15:00,21.91 MB 09-8非線性SVM代碼實現.mp4,2024/9/6 15:00,22.93 MB 09-9SVM回歸任務代碼實現.mp4,2024/9/6 15:00,14.35 MB 10-1本章總覽.mp4,2024/9/6 15:00,22.39 MB 10-2貝葉斯方法核心思想和原理.mp4,2024/9/6 15:00,31.95 MB 10-3樸素貝葉斯分類.mp4,2024/9/6 15:00,20.3 MB 10-4樸素貝葉斯的代碼實現.mp4,2024/9/6 15:00,27.24 MB 10-5多項式樸素貝葉斯代碼實現.mp4,2024/9/6 15:00,23.65 MB 10-6貝葉斯方法優缺點和適用條件.mp4,2024/9/6 15:00,25.46 MB 11-1本章總覽.mp4,2024/9/6 15:00,14.58 MB 11-2集成學習核心思想和原理.mp4,2024/9/6 15:00,19.98 MB 11-3集成學習代碼實現.mp4,2024/9/6 15:00,24.36 MB 11-4并行策略:Bagging、00B等方法.mp4,2024/9/6 15:00,38.79 MB 11-5并行策略:隨機森林.mp4,2024/9/6 15:01,17.55 MB 11-6串行策略:Boosting.mp4,2024/9/6 15:01,27.39 MB 11-7結合策略:Stacking方法.mp4,2024/9/6 15:01,13.32 MB 11-8集成學習優缺點和適用條件.mp4,2024/9/6 15:01,24.86 MB 12-1本章總覽.mp4,2024/9/6 15:01,9.93 MB 12-2聚類算法核心思想和原理.mp4,2024/9/6 15:01,16.26 MB 12-3k-means和分層聚類.mp4,2024/9/6 15:01,22.78 MB 12-4聚類算法代碼實現.mp4,2024/9/6 15:01,21.93 MB 12-5聚類評估代碼實現.mp4,2024/9/6 15:01,20.3 MB 12-6聚類算法優缺點和適用條件,mp4,2024/9/6 15:01,19.69 MB 13-1本章總覽.mp4,2024/9/6 15:01,17.31 MB 13-2PCA核心思想和原理,mp4,2024/9/6 15:01,25.38 MB 13-3PCA求解算法.mp4,2024/9/6 15:02,21.56 MB 13-4PCA算法代碼實現.mp4,2024/9/6 15:01,15.17 MB 13-5降維任務代碼實現.mp4,2024/9/6 15:01,23.61 MB 13-6PCA在數據降噪中的應用.mp4,2024/9/6 15:01,13.79 MB 13-7PCA在人臉識別中的應用.mp4,2024/9/6 15:02,28.39 MB 13-8主成分分析優缺點和適用條件.mp4,2024/9/6 15:01,9.45 MB 14-1本章總覽.mp4,2024/9/6 15:02,13.97 MB 14-2概率圖模型核心思想和原理,mp4,2024/9/6 15:02,52.82 MB 14-3EM算法參數估計,mp4,2024/9/6 15:02,20.45 MB 14-4隱馬爾可夫模型代碼實現.mp4,2024/9/6 15:03,43.03 MB 14-5概率圖模型優缺點和適用條件.mp4,2024/9/6 15:02,11.6 MB 15-1本章總覽.mp4,2024/9/6 15:02,8.53 MB 15-2泰坦尼克生還預測.mp4,2024/9/6 15:02,61.96 MB 15-3房價預測.mp4,2024/9/6 15:02,67.17 MB 15-4交易反欺詐代碼實現.mp4,2024/9/6 15:02,35.9 MB 15-5如何深入研究機器學習.mp4,2024/9/6 15:02,11.51 MB 該文章在 2024/10/3 17:42:21 編輯過 |
關鍵字查詢
相關文章
正在查詢... |